Strong solutions for 1D compressible Navier-Stokes/Allen-Cahn system with phase variable dependent viscosity
نویسندگان
چکیده
This paper is concerned with a non-isentropic compressible Navier-Stokes/Allen-Cahn system phase variable dependent viscosity η ( χ ) = α and temperature heat-conductivity κ θ β . We show the global existence long time behavior of strong solutions under some assumptions on growth exponent initial data. It worth noting that data could be large if ≥ 0 small, > can arbitrary large.
منابع مشابه
Vacuum Behaviors around Rarefaction Waves to 1D Compressible Navier-Stokes Equations with Density-Dependent Viscosity
In this paper, we study the large time asymptotic behavior toward rarefaction waves for solutions to the 1-dimensional compressible Navier-Stokes equations with density-dependent viscosities for general initial data whose far fields are connected by a rarefaction wave to the corresponding Euler equations with one end state being vacuum. First, a global-in-time weak solution around the rarefacti...
متن کاملGlobal solutions of compressible Navier–Stokes equations with a density–dependent viscosity coefficient
We prove the global existence and uniqueness of the classical (weak) solution for the 2D or 3D compressible Navier–Stokes equations with a density–dependent viscosity coefficient (λ = λ(ρ)). Initial data and solutions are only small in the energy-norm. We also give a description of the large time behavior of the solution. Then, we study the propagation of singularities in solutions. We obtain t...
متن کاملGlobal Solutions to the Spherically Symmetric Compressible Navier-Stokes Equations with Density-Dependent Viscosity
We consider the exterior problem and the initial boundary value problem for the spherically symmetric isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient in this paper. For regular initial density, we show that there exists a unique global strong solution to the exterior problem or the initial boundary value problem, respectively. In particular, the stro...
متن کاملWeak-strong uniqueness for compressible Navier-Stokes system with slip boundary conditions on time dependent domains
We consider the compressible Navier-Stokes system on time-dependent domains with prescribed motion of the boundary, supplemented with slip boundary conditions for the velocity. We derive the relative entropy inequality in the spirit of [7] for the system on moving domain and use it to prove the weak-strong uniqueness property.
متن کاملWeak-strong uniqueness for the isentropic compressible Navier-Stokes system
We prove weak-strong uniqueness results for the isentropic compressible Navier-Stokes system on the torus. In other words, we give conditions on a strong solution so that it is unique in a class of weak solutions. Known weak-strong uniqueness results are improved. Classical uniqueness results for this equation follow naturally.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2022
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2022.04.007